Today we to a crash course on Scikit-Learn, the go-to library in Python when it comes to traditional machine learning algorithms (i.e., not deep learning).
Scikit-Learn Docs: https://scikit-learn.org/stable/api/index.html
◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾
📚 Programming Books & Merch 📚
🐍 The Python Bible Book: https://www.neuralnine.com/books/
💻 The Algorithm Bible Book: https://www.neuralnine.com/books/
👕 Programming Merch: https://www.neuralnine.com/shop
💼 Services 💼
💻 Freelancing & Tutoring: https://www.neuralnine.com/services
🖥️ Setup & Gear 🖥️: https://neuralnine.com/extras/
🌐 Social Media & Contact 🌐
📱 Website: https://www.neuralnine.com/
📷 Instagram: https://www.instagram.com/neuralnine
🐦 Twitter: https://twitter.com/neuralnine
🤵 LinkedIn: https://www.linkedin.com/company/neuralnine/
📁 GitHub: https://github.com/NeuralNine
🎙 Discord: https://discord.gg/JU4xr8U3dm
Timestamps:
(0:00) Intro
(1:49) Environment Setup
(5:32) Preview Example
(12:22) Datasets
(23:12) Splitting Data
(33:02) Preprocessing
(41:35) Feature Encoding
(52:51) Classification
(1:00:27) Regression
(1:04:48) Clustering
(1:12:58) PCA
(1:18:04) Metrics
(1:23:33) Cross-Validation
(1:25:37) Hyperparameter Tuning
(1:31:04) Pipelines
(1:32:53) Outro
source
